
PHYSICAL REVIEW E FEBRUARY 1997VOLUME 55, NUMBER 2
Quantum dynamics of an electric charge in an oscillating pulsed magnetic field

I. S. Oliveira, A. P. Guimara˜es, and X. A. da Silva
Centro Brasileiro de Pesquisas Fı´sicas, Rua Dr. Xavier Sigaud, 150, Rio de Janeiro 22290-180, Brazil

~Received 19 August 1996!

We investigate the motion of a charged particle under the action of a time-dependent oscillating magnetic
field. For one and two magnetic pulses we obtain analytical expressions for thefree current decayandcurrent
echo, respectively, in agreement with a recently proposed classical description of the electrical current in fields
E andB. In a continuous ac field the particle eigenstates are calculated. When the resonance condition is
achieved, the axis of quantization is turned over by 90°. The results suggest a magneticpulsed resonant
method to separate charged particles in a beam.@S1063-651X~97!05502-5#

PACS number~s!: 41.75.2i, 03.65.Ge, 41.20.Bt
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The problem of an ensemble of paramagnetic moment
an oscillating magnetic field gained a great deal of inter
from the middle 1940s with the work of Bloch, Hansen, a
Packard@1# and Hahn@2#. The latter discovered the existenc
of spin echoes and demonstrated that they were solution
the Bloch equations under pulsed magnetic fields. Spin e
oes can also be easily deduced from a quantum-mecha
approach @3#. Hahn’s discovery foundedpulsed nuclear
magnetic resonance~NMR!, a technique which has sprea
over many areas of scientific research and technical app
tions.

On the other hand, the quantum dynamics of a char
particle in a homogeneous static magnetic field is of con
erable practical and academic interest, and has been inv
gated by many authors@4–6#. The general problem is finding
the solution for the Schro¨dinger equation
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5Hc5

1

2m
@P2qA#2c, ~1!

whereq is the particle charge,m its mass, and the magnet
field is obtained fromB5¹3A. If H is time independent
the general solution of Eq.~1! will be given by

c~ t !5exp@2~ i /\!Ht#c~0!. ~2!

In this paper we shall consider the quantum dynamics
charged particle under the action of an oscillating magn
field given by

B~ t !5 iB1cos~vt !1 jB1sin~vt !1kB0 . ~3!

In this caseB can still be derived from a vector potenti
A(t) through the same relationB5¹3A, but obviously so-
lution ~2! will no longer be valid. However, there is still
way to solve the problem, which is to consider the parti
motion in a rotating reference framewhereB is stationary
@3#. It has been shown recently that a similar treatment
the classical equations of motion of the electrical curren
the presence of fieldsE andB leads to interesting resonanc
phenomena similar to the free induction decay and spin e
in the magnetic case. These have been calledfree current
decayandcurrent echo@8#.
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The transformation of a magnetic field given by Eq.~3! to
a rotating reference frame with angular frequencyv is a well
known procedure@3#. The result is thetime-independent
effective field

Be5~v/g2B0!k1B1i, ~4!

whereg[q/m is the analog of the gyromagnetic ratio in th
usual NMR. WritingDB5v/g2B0 , the components of the
corresponding vector potential in this system of coordina
will be

Ax52 1
2 ~DB!Y,

Ay5
1
2 @~DB!X2B1Z#,

Az5
1
2 B1Y.

We see from the above that the potential vector is giv
by A52(1/2)R3Be. We also see thatA satisfies the Cou-
lomb gauge:¹•A50. Here we are not distinguishing oper
tors in the rotating and laboratory frames. Wherever nec
sary, a clear distinction will be made.

Replacing the components ofA in the Hamiltonian one
finds

H5
Px
21Py

21Pz
2

2m
1
mg2~DB!2

8
~X21Y2!

1
mg2B1

2

8
~Y21Z2!1

g~DB!

2
Lz1

gB1

2
Lx

2
mg2

4
B1~DB!XZ. ~5!

Expression~2! and Hamiltonian~5! allow the calculation
of the expected value of an observableQ̂ at any instant of
time t. In this paper we will apply these expressions to stu
the quantum dynamics of a charged particle in the magn
field given by Eq.~3! in the cases where the field is applie
as a sequence of one and two pulses, respectively, each
with the same durationt. Then we briefly discuss the cas
where the field is applied continuously.
2063 © 1997 The American Physical Society
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In what follows, we will suppose that we are close to t
resonance frequency, that is,v'vc . This means that when
the pulse is ‘‘on,’’B1@DB. We see that under this assum
tion, the Hamiltonian~5! is diagonalized. It is also interestin
to note that when the pulse is ‘‘turned off’’ (B150) Eq. ~5!
is again diagonal. This is an important consideration to
taken into account when investigating the application
more than one pulse, as shown below.

Let us calculatê Ẏ&(t), the expected value for the pa
ticle speed att5t. This will be given by@9#

i\^Ẏ&~t!5^@Y,H#&~t!

5
^Py&~t!

m
1

Dv

2
^X&~t!2

v1

2
^Z&~t!. ~6!

Since by hypothesis we are close to the resonance,
term in Dv can be neglected. Now, according to Eq.~2!,
^Py&(t) is given by

^Py&~t!5E c* ~0!e~ i /\!HtPye
2~ i /\!Htc~0!d3r . ~7!

We will write H5Hi1H' , where

Hi5Px
2/2m

H'5Hyz1v1Lx/2,

with v15gB1 and

Hyz5~Py
21Pz

2!/2m1mv1
2~Y21Z2!u8.

It is easy to verify that@Hi ,Lx#5@Hi ,Hyz#5@Lx ,Hyz#
50, so we can factorize the exponential operator in Eq.~7!
into a product of three terms which commute among the
selves@9#.

We begin by calculating the operator

e~ i /\!HyztPye
2~ i /\!Hyzt.

The Hamiltonian Hyz is a complicated function o
Y, Z, Py , andPz . Since thez components commute with
the y components, this operator can be further factoriz
leaving only

e~ i /2m\!tPy
2
1~ img2B1

2/8\!tY2Pye
2~ i /2m\!tPy

2
2~ img2B1

2/8\!tY2.

In order to find a closed form for this operator, consid
the expression@10#

eÔPye
2Ô5Py1@Ô,Py#1

1

2!
†Ô,@Ô,Py#‡

1
1

3!
@Ô,†Ô,@Ô,Py#‡#1•••.

Replacing Ô5( i /2m\)tPy
21( img2B1

2/8\)tY2 in the
above series and using the expression@AB,C#5A@B,C#
1@A,C#B, one finds
e
f

he

-

,

r

eÔPye
2Ô5F12

1

2! S v1t

2 D 21 1

4! S v1t

2 D 42••• GPy

2
mv1

2t

4 F12
1

3! S v1t

2 D 21 1

5! S v1t

2 D 42••• GY.
~8!

The terms between brackets are well known series@11#

(
n50

`

~21!n
x2n

~2n!!
5cos~x!,

(
n50

`

~21!n
x2n

~2n11!!
5x21sin~x!,

with x5v1t/2. The final result is

eÔPye
2Ô5cosS v1t

2 DPy2
mv1

2
sinS v1t

2 DY.
Then, the next operators to be calculated are

e~ iv1t/2\!LxFcosS v1t

2 DPy2
mv1

2
sinS v1t

2 DYGe~2 iv1t/2\!Lx,

which represents a rotation ofY andPy about thex axis by
an anglev1t/25gB1t/2. Using the relations@9#

e~ i /\!fLxYe~2 i /\!fLx5Ycosf2Zsinf,

e~ i /\!fLxPye
~2 i /\!fLx5Pycosf2Pzsinf,

one finds

^Py&~t!5py0cos
2S gB1t

2 D2
p0z
2
sin~gB1t!

2
mv1

2 Fy02 sin~gB1t!2z0sin
2S gB1t

2 D G , ~9!

whereq05*c* (0)Q̂c(0)d3r stands for the expected valu
of an observableQ̂ at t50. „Note that the last operator to b
applied on Eq.~7!, exp@(i/2m\)Px

2#, does not act either on
Y or Py .…

Now it remains for us to calculatêZ&(t). It is easy to
verify that

e~ i /\!HyztZe2~ i /\!Hyzt5cosS v1t

2 DZ1
2

mv1
sinS v1t

2 DPz .

From this, one finds

^Z&~t!5z0cos
2S gB1t

2 D1
y0
2
sin~gB1t!

1
2

mv1
Fp0z2 sin~gB1t!1p0ysin

2S gB1t

2 D G .
~10!

Gathering all the terms in Eq.~6!, we finally have
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m^Ẏ&~t!5p0ycos~gB1t!2p0zsin~gB1t!

2
mgB1

2
@z0cos~gB1t!1y0sin~gB1t!#.

~11!

With simplifying initial conditions x05y05z050;
px05py050, andpz05p0, we arrive at

m^Ẏ&~t!52p0sin~gB1t!.

Repeating the above procedure for thex and z compo-
nents one finds

m^Ż&~t!51p0cos~gB1t!,

m^Ẋ&~t!50.

Other quantities of interest can be calculated in the sa
way. For instance,

^Y&~t!52sin2~gB1t/2!2p0 /mv1 .

We can correlate the above result form^Ẏ&(t) with the
semiclassical expression for the electrical current density

Jy~t!52nq^Ẏ&~t!5J0sin~gB1t!, ~12!

whereJ05nqp0 /m andn is the particle density. This is th
same expression as that obtained classically for thefree cur-
rent decayin Ref. @8#. Note that we could have taken int
account theinitial direction of po by adding an arbitrary
phased onto the expression form^Ẏ&(t). For instance,

m^Ẏ&~t!522p0sinS gB1t

2
1d D cosS gB1t

2
1d D

52p0sin~gB1t12d!,

whered50 represents a particle initially moving in the d
rection1z, whereas ifd5p/2 we will simply have a change
in the sign of ^Py&, corresponding to an inversion in th
direction ofp0.

In order to calculatem^Ẏ& for a sequence of two pulse
we must remember that during the time the pulses are ‘‘o
the dynamics of the particle will develop under the Ham
tonian

H5
Px
21Py

21Pz
2

2m
1
mv1

2

8
~Y21Z2!1

v1

2
Lx

and during the intervals when they are ‘‘off,’’B150, and
H becomes

H5
Px
21Py

21Pz
2

2m
1
mDv2

8
~X21Y2!1

Dv

2
Lz .

The calculation is rather tedious because of the vari
terms appearing in the above Hamiltonians, but it can
carried out in a way similar to that of Ref.@3# for the calcu-
lation of the spin echo in the magnetic case, and using
e

’’

s
e

e

results of the previous paragraphs. At the resona
(Dv50), one finds for thecurrent echoamplitude

m^Ẏ&~2t!5p0sin
2~gB1t/2!sin~gB1t!. ~13!

This expression agrees with the classical result@8#. The other
two terms add to it in the general result. They are associa
to thefree current decaysafter the first and second pulses
shown by Bloom for the magnetic case@12#.

At this point it may be worth remembering that the abo
results are valid foranycharged particle. The only differenc
will be on the ‘‘gyromagnetic factor,’’g5q/m, the ratio
between the particle charge and mass. The sign ofg deter-
mines the sense of the particle rotation in the field, wher
its magnitude defines its cyclotron frequency. For themuon,
for instance, whose mass is about 200 times bigger than
electron mass, the resonance frequency will be correspo
ingly lower. The same is true for ‘‘heavy electrons’’ in th
intermetallic compounds known asheavy fermions, or still
for ions in an ion beam. As an example, take a triply ioniz
atom of 157Gd which hasq/m'0.18 MHz kG21. In a field
B151 kG, the particle frequency on the rotating frame at t
resonance will ben15v1/2p'0.3 MHz. If the initial energy
of the particle is 1 keV, the maximum distance reached
the y axis will be approximately 40 cm.

Finally, we shall mention that Hamiltonian~5! can also be
easily diagonalized in the situation where the ac field is
plied continuously. All we have to do is to ‘‘rotate’’ thez
axis by an angleu5arctan(B1 /DB) to a new reference sys
tem whereBe5(B1

21DB2)1/2 is axial. The Hamiltonian then
becomes the standard one for an electron in a ‘‘static’’ fie
with cyclotron frequencyvc85gBe , and eigenvalues given
by @9#

En8~pz8!5S n81
1

2D\vc81pz8
2/2m, ~14!

wherevc85qBe /m is the particlecyclotron frequency abou
the effective field in the rotating frame.

The above result has some interesting consequences
note that ifv is far from the resonance frequency, that
Dv@v1 ~or DB@B1), the Landau levels will be quantize
on the x-y plane @9#. But at the resonance,Dv50, these
levels are turned over and the quantization will take place
the z-y plane with energies given by

En~px!5~n1 1
2 !\v11px

2/2m. ~15!

Consequently, the quantization axis can be rotated cont
ously from z to x by sweepingv over the resonance fre
quency.

Summarizing, we have investigated the quantu
dynamical behavior of a charged particle in an oscillati
magnetic field. We analyzed two distinct cases:~i! the oscil-
lating field is applied as a sequence of pulses and~ii ! it is
applied continuously. In both cases there exists an exact
lytical solution, irrespective of the relative magnitudes of t
static and oscillating fields. The main conclusions are as
lows: ~i! expressions for the free current decay and curr
echoes at the resonance can be derived; these expres
agree with those obtained from a classical approach in R



a

ap
fo
te
e
tie
lity
hi
u-

re

n
ion
f a
opy.
he
ia,
ce,

u-

2066 55BRIEF REPORTS
@8#; ~ii ! on the second case, the eigenstates of the particle
obtained. The so-calledLandau tubesare turned over the
direction of the field as the resonance frequency is
proached. This effect may be of practical importance,
instance, in the de Haas–van Alphen effect, where the in
section between the Landau tubes and the Fermi surfac
metals gives rise to oscillations in various physical proper
with the field amplitude, such as the magnetic susceptibi
etc. @7#. We have not considered the particle spin on t
paper, but its inclusion is straightforward if spin-orbit co
pling is neglected.

From the above it is clear that these effects are not
stricted to systems where arelaxation timeexists, as dis-
re

-
r
r-
in
s
,
s

-

cussed in Ref.@8#. They can, in principle, be observed eve
in isolated free particles in vacuum, as for instance, in an
beam. This may be of relevance for the development o
magnetic pulse technique for charged particle spectrosc
In solid state physics it may find useful applications in t
investigation of transport properties in conducting med
through the study of the electron cyclotron resonan
electron-electron, and electron-lattice scattering rates.
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