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Quantum dynamics of an electric charge in an oscillating pulsed magnetic field
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We investigate the motion of a charged particle under the action of a time-dependent oscillating magnetic
field. For one and two magnetic pulses we obtain analytical expressions fise¢heurrent decayndcurrent
echq respectively, in agreement with a recently proposed classical description of the electrical current in fields
E andB. In a continuous ac field the particle eigenstates are calculated. When the resonance condition is
achieved, the axis of quantization is turned over by 90°. The results suggest a mamgetid resonant
method to separate charged particles in a bd&h063-651X97)05502-5

PACS numbes): 41.75-i, 03.65.Ge, 41.20.Bt

The problem of an ensemble of paramagnetic moments in The transformation of a magnetic field given by E8j.to
an oscillating magnetic field gained a great deal of interesa rotating reference frame with angular frequencis a well
from the middle 1940s with the work of Bloch, Hansen, andknown procedureg[3]. The result is thetime-independent
Packard 1] and Hahr{2]. The latter discovered the existence effective field
of spin echoes and demonstrated that they were solutions of
the Bloch equations under pulsed magnetic fields. Spin ech- Be=(w/y—Bg)k+Byi, 4
oes can also be easily deduced from a quantum-mechanical
approach[3]. Hahn's discovery foundeculsed nuclear wherey=q/m is the analog of the gyromagnetic ratio in the
magnetic resonanceNMR), a technique which has spread usual NMR. WritingAB= w/y— B, the components of the
over many areas of scientific research and technical applicazorresponding vector potential in this system of coordinates

tions. will be
On the other hand, the quantum dynamics of a charged
particle in a homogeneous static magnetic field is of consid- A,=— 3 (AB)Y,
erable practical and academic interest, and has been investi-
gated by many authof4—6]. The general problem is finding A =L1[(AB)X—B.Z
the solution for the Schobnger equation y=21(AB) 121,
1
h ‘M—H 2 P—qgA]? 1 S
T o0 - =5 [PmaAlTY, 1)

We see from the above that the potential vector is given
by A= —(1/2)RXB,. We also see thaA satisfies the Cou-
whereq is the particle chargam its mass, and the magnetic lomb gauge¥-A=0. Here we are not distinguishing opera-
field is obtained fromB=VXA. If H is time independent, tors in the rotating and laboratory frames. Wherever neces-

the general solution of Eq1) will be given by sary, a clear distinction will be made.
Replacing the components &f in the Hamiltonian one
p(t)=exd — (i/A)Ht]4(0). (2)  finds
In this paper we shall consider the quantum dynamics of a _ Pi+PJ+P2 N my*(AB)? VRV
charged particle under the action of an oscillating magnetic N 2m 8 ( )
field given by 2p2
m AB B
, o + Y Py 724 " )LZ+ Ry
B(t)=iB;coq wt) +jB;sin(wt) +kBy. 3 8 2 2
2
In this caseB can still be derived from a vector potential —m—yBl(AB)XZ. (5)
A(t) through the same relatioB= VX A, but obviously so- 4

lution (2) will no longer be valid. However, there is still a ] o )

way to solve the problem, which is to consider the particle EXpression2) and Hamiltonian(S) allow the calculation
motion in arotating reference framavhereB is stationary of the expected value of an observali)eat any instant of

[3]. It has been shown recently that a similar treatment fotimet. In this paper we will apply these expressions to study
the classical equations of motion of the electrical current irthe quantum dynamics of a charged particle in the magnetic
the presence of fieldg andB leads to interesting resonance field given by Eq.(3) in the cases where the field is applied
phenomena similar to the free induction decay and spin echas a sequence of one and two pulses, respectively, each one
in the magnetic case. These have been cdlled current  with the same duratior. Then we briefly discuss the case
decayandcurrent echq8]. where the field is applied continuously.
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In what follows, we will suppose that we are close to the
resonance frequency, that is~ w.. This means that when eOPye_
the pulse is “on,”B;>AB. We see that under this assump-
tion, the Hamiltonian(5) is diagonalized. It is also interesting mwir
to note that when the pulse is “turned off'B{=0) Eq. (5) "
is again diagonal. This is an important consideration to be
taken into account when investigating the application of 8)
more than one pulse, as shown below.

Let us calculatg Y)(7), the expected value for the par-
ticle speed at= 7. This will be given by[9]

o_

31\ 2

The terms between brackets are well known sdrlds

2n

S, (~1)" oy =cosx),

in (Y)Y (1) =([Y,H])(7) A=0
P)(7) A = x2n L
! yn>17 +Tw<x>(7)_%<z>(7)' ©®) nzz%)(—l)“m:x Isin(x),

Since by hypothesis we are close to the resonance, thaith x=w,7/2. The final result is
term in Aw can be neglected. Now, according to E8),

(Py)(7) is given by Op o0 cod P17\ p _ M®1 . [ @17
e-Pye co > Py 2sm > Y.
<Py>(7)=f P* (0)eMHTp o= (T (0)d3r.  (7) Then, the next operators to be calculated are
We will write H="H;+H, , where glio/2h)Ly cos(leT> py_%sin "’717 y [e(—ioir2h)Ly
Hj=PZ/2m

which represents a rotation §f and P, about thex axis by
H, =Hyt 0L l2, an anglew,7/2=yB,7/2. Using the relation§9]
eli/Mdlxy =1 dlx=Ycosp— Zsing,
W|th W= ’}/Bl and
ell/Mdbxp e(~1MeLy=Pp cosp—P,sing,
Hy,=(P2+ P2)/2m+ mw2(Y2+Z2)[8. Y ye0sp = Pasing
one finds
It is easy to verify thal H,Ly]=[H), Hyl=[Lx, Hy,l
=0, so we can factorize the exponential operator in &3.
into a product of three terms which commute among them-
selves[9].
We begin by calculating the operator

B z .
(Py)(n)= pyoco§( %) - p70Sln( vB17)

2

C)

yB17
2

! %S'm'yBlT)_ZOs"]Z(
e(i/ﬁ)HyZTPyef(i/ﬁ)Hyzr_
whereqo=J ¢* (0)Q(0)d3 stands for the expected value

The Hamiltonian H,, is a complicated function of of an observabl€) att=0. (Note that the last operator to be

Y, Z, Py, andP,. Since thez components commute with  5pplied on Eq(7), exd(i/2m#4)P2], does not act either on
the y components, this operator can be further factorizedy, o, P,.)

leaving only Now it remains for us to calculat¢Z)(7). It is easy to

verify that
olir2mi) TP§+ (imy?B2/8h) Y2 Pye (i/zmh)fpﬁ— (imy?B2/8h) 2
a)lT

, _ _ (1) Hy 577 o (111 Hy g7 —
In order to find a closed form for this operator, consider &' YZZe = COS{ 2
the expressionl0]

- 2 wlrp
m—wlSIHT z-

From this, one finds
. . . 1 . .
e%Pye"0=P,+[0,P]+5[0,[0,P]]

(Z)(T)=zocosz( 7217) + %sin( ¥B,7)

1 . . .
-I—a[O,[O,[O,Py]]H—u-.

Poz_. . yB17
o TSII’I('yBlT)-i-pOySInZ( 3 ) .
Replacing O= (i/2m#) 7P+ (imy?B3/8)7Y? in the (10)
above series and using the expressjéxB,C]=A[B,C]
+[A,C]B, one finds Gathering all the terms in E@6), we finally have
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m(Y = Dn.COS VB 7) — Dr.Sin( vB results of the previous paragraphs. At the resonance
(Y)(7)=poyCOg ¥B17) — P Sin( yB17) (Aw=0), one finds for theurrent echoamplitude
myB; . )
— 5 [20C08YB17) +YoSin(yB17) |. m(Y)(27) = posirP(yB,7/2)sin(yB17).  (13)

(1)) This expression agrees with the classical ré@]ltThe other
two terms add to it in the general result. They are associated
to thefree current decayafter the first and second pulses as
shown by Bloom for the magnetic cagE2].

At this point it may be worth remembering that the above
results are valid foany charged particle. The only difference
will be on the “gyromagnetic factor,”y=q/m, the ratio

With simplifying initial conditions xg=Yy,=27=0;
Pxo=Pyo=0, andp,,=poy, we arrive at

m(Y)(7)=— poSin(yB,7).

Repeating the above procedure for theand z compo-

nents one finds bgtween the particle chargg and mass. .The sigm déter-
mines the sense of the particle rotation in the field, whereas
m(Z)(T): +Pocog yB, 7, its magnitude defines its cyclotron frequency. For mingon

for instance, whose mass is about 200 times bigger than the

electron mass, the resonance frequency will be correspond-

ingly lower. The same is true for “heavy electrons” in the

intermetallic compounds known deavy fermionsor still

or ions in an ion beam. As an example, take a triply ionized

atom of 1%'Gd which hasy/m~0.18 MHz kG 1. In a field
(Y)(7)= —Sir?(yB17/2)2po/Mw; . B,=1 kG, the particle frequency on the rotating frame at the

resonance will ber; = w,/27~0.3 MHz. If the initial energy
We can correlate the above result m(y>(7.) with the  Of the particle is 1 keV, the maximum distance reached on

semiclassical expression for the electrical current density they axis will be approximately 40 cm.
Finally, we shall mention that Hamiltonigh) can also be

3y (n)= —nq(Y)(r)zJosin(yBlr), (12) easily diagonalized in the situation where the ac field is ap-
plied continuously. All we have to do is to “rotate” the
whereJ,=nqp,/m andn is the particle density. This is the axis by an angled=arctanB,/AB) to a new reference sys-
same expression as that obtained classically fofrgmcur-  tem whereB,= (Bi+ AB2)2is axial. The Hamiltonian then
rent decayin Ref. [8]. Note that we could have taken into becomes the standard one for an electron in a “static” field,
account theinitial direction of p, by adding an arbitrary with cyclotron frequencyw.=yB., and eigenvalues given

m(X)(7)=0.

Other quantities of interest can be calculated in the sam
way. For instance,

phases onto the expression fan(Y)(7). For instance, by [9]
. Bi7 Bi7 Vo , 1 , ,
m<Y>(T)=—2posin(y21 +6 cos(jlz1 +6 En(Pz)=|n"+35 g+ p,2l2m, (14
= —poSin(yB,7+26), wherew_=(qB./m is the particlecyclotron frequency about

the effective field in the rotating frame

where 6=0 represents a particle initially moving in the di-  The above result has some interesting consequences. We
rection+z, whereas if6= /2 we will simply have a change note that ifw is far from the resonance frequency, that is,
in the sign of(Py), corresponding to an inversion in the A, (or AB>B;), the Landau levels will be quantized
direction of pg. _ on thex-y plane[9]. But at the resonanceéyw=0, these

In order to calculatan(Y) for a sequence of two pulses levels are turned over and the quantization will take place on
we must remember that during the time the pulses are “on,’the z-y plane with energies given by
the dynamics of the particle will develop under the Hamil-

tonian En(py)=(n+ fiw,+p2/2m, (15)
B Pi+Py+P:  mof 9 oo O1 Consequently, the quantization axis can be rotated continu-
= (Y+Z9)+ =Ly )
2m 8 2 ously fromz to x by sweepingw over the resonance fre-
guency.
and during the intervals when they are “offB;=0, and Summarizing, we have investigated the quantum-
‘H becomes dynamical behavior of a charged particle in an oscillating
s o ) magnetic field. We analyzed two distinct cas@sthe oscil-
_PytPytP; mAe® o Aw lating field is applied as a sequence of pulses @ndit is
- 2m + 8 (XT+Y+ TLZ' applied continuously. In both cases there exists an exact ana-

Iytical solution, irrespective of the relative magnitudes of the

The calculation is rather tedious because of the varioustatic and oscillating fields. The main conclusions are as fol-

terms appearing in the above Hamiltonians, but it can bdows: (i) expressions for the free current decay and current
carried out in a way similar to that of Rgf3] for the calcu- echoes at the resonance can be derived; these expressions

lation of the spin echo in the magnetic case, and using thagree with those obtained from a classical approach in Ref.
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[8]; (ii) on the second case, the eigenstates of the particle ameissed in Ref[8]. They can, in principle, be observed even
obtained. The so-callelandau tubesare turned over the in isolated free particles in vacuum, as for instance, in an ion
direction of the field as the resonance frequency is apbeam. This may be of relevance for the development of a
proached. This effect may be of practical importance, formagnetic pulse technique for charged particle spectroscopy.
instance, in the de Haas—van Alphen effect, where the intein solid state physics it may find useful applications in the
section between the Landau tubes and the Fermi surface iﬁvestigation of transport properties in conducting media,
metals gives rise to oscillations in various physical propertie%rough the study of the electron cyclotron resonance,

with the field amplitude, such as the magnetic susceptibility g|ectron-electron, and electron-lattice scattering rates.
etc. [7]. We have not considered the particle spin on this

paper, but its inclusion is straightforward if spin-orbit cou-  One of the authord.S.0) is thankful to Dr. I. G. Oliveira

pling is neglected. and V. L. B. de Jesus for their careful reading of the manu-
From the above it is clear that these effects are not rescript. This work was supported by CNPq, Brazil.

stricted to systems where r@laxation timeexists, as dis-
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